INTRODUCTION

The details in this section have been developed for internally insulated cavity wall constructions. The introduction document "Limiting Thermal Bridging and Air Infiltration Acceptable Construction Details" provides practical information with regards to implementation of these details onsite. This guide should be read in conjunction with these details.

Section 3 is a construction method that is typically combined with sections 1, 4 & 5 and is similar thermally to section 6. It is not intended to be used as a stand alone construction in this document. As a result psi values have not been provided for the section and the y-value of 0.08 should not be claimed for these details a a stand alone construction. The appropriate psi values to be used are those provided for constructions with internal insulation in sections 1, 4 & 5.

The details are indicative. They focus on the issues of thermal performance and air tightness. Other issues are not considered fully. Insulation thicknesses for the main building elements have not been provided, as these depend on the thermal properties of the materials chosen, as well as on the desired U-value.

Masonry materials shown on the drawings are blocks and bricks. Other masonry materials, including precast and insitu concrete, may be substituted without loss of thermal performance or increased technical risk. The use of thermally resistant materials, beyond that depicted, will naturally increase the thermal performance of the building fabric.

All materials and workmanship are to be installed to Technical Guidance Document D ‘Materials and workmanship’.

Due to the practicalities of fixing insulated dry lining to blockwork, insulation should be installed in accordance with manufacturers specifications.

All details are shown with a brick or block outer leaf for simplification. However, other types of masonry materials may be used as a substitution, such as blockwork with render, precast and insitu concrete, or tile hanging or weather boarding, without loss of thermal performance or increased technical risk. All external cladding systems should be proper materials as defined in Part D.

The suitability of full fill cavity construction depends on the site exposure and the nature of the outer leaf. Further information is given in in BR 262 "Thermal Insulation: Avoiding Risks"HomeBond Housebuilding Manual and relevant Irish Agreement Board certificates.

Cavity barriers are shown as continuous lines of dab (adhesive) on drawings. Other suitable cavity barriers may be used for different internal insulation fixing methods. For cavity barriers associated with cavity walls see Section 1 Walls --insulation in cavity.

These diagrams illustrate good practice for design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Table D3: Section 3 - Internal Insulation

<table>
<thead>
<tr>
<th>Junction detail identifier 2011 Edition</th>
<th>Section 3 Details</th>
<th>Target U-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section 3 Details</td>
<td>U-Values defined in tables D1, D4 & D5 for constructions combined with internal insulation</td>
</tr>
<tr>
<td></td>
<td>3.01</td>
<td>Ground Floor - Insulation above slab</td>
</tr>
<tr>
<td></td>
<td>3.02</td>
<td>Ground Floor - Insulation below slab</td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>Timber Suspended Ground Floor</td>
</tr>
<tr>
<td></td>
<td>3.04</td>
<td>Concrete Intermediate Floor</td>
</tr>
<tr>
<td></td>
<td>3.05</td>
<td>Timber Intermediate Floor</td>
</tr>
<tr>
<td></td>
<td>3.06</td>
<td>Masonary Separating Wall - plan</td>
</tr>
<tr>
<td></td>
<td>3.07</td>
<td>Masonary Partition Wall - plan</td>
</tr>
<tr>
<td></td>
<td>3.08</td>
<td>Stud Partition Wall - plan</td>
</tr>
<tr>
<td></td>
<td>3.09</td>
<td>Eaves - Ventilated roof space</td>
</tr>
<tr>
<td></td>
<td>3.10</td>
<td>Eaves - Unventilated roof space</td>
</tr>
<tr>
<td></td>
<td>3.11</td>
<td>Eaves - Ventilated - Insulation between and under rafters - Dormer</td>
</tr>
<tr>
<td></td>
<td>3.12</td>
<td>Eaves - Unventilated - Insulation between and under rafters - Dormer</td>
</tr>
<tr>
<td></td>
<td>3.13</td>
<td>Eaves - Ventilated - Insulation between and under rafters - Pitched ceiling</td>
</tr>
<tr>
<td></td>
<td>3.14</td>
<td>Eaves - Unventilated - Insulation between and over rafters</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>Ventilated Roof - Attic Floor Level</td>
</tr>
<tr>
<td></td>
<td>3.16</td>
<td>Gable - Insulation between and under rafters - Ventilated Rafter Void</td>
</tr>
<tr>
<td></td>
<td>3.17</td>
<td>Gable - Insulation between and under rafters - Unventilated Rafter Void</td>
</tr>
<tr>
<td></td>
<td>3.18</td>
<td>Gable - Insulation between and over rafters - Unventilated Rafter Void</td>
</tr>
<tr>
<td></td>
<td>3.19</td>
<td>Flat Roof - Parapet</td>
</tr>
<tr>
<td></td>
<td>3.20</td>
<td>Flat Roof - Eaves</td>
</tr>
<tr>
<td></td>
<td>3.21</td>
<td>Ope Steel - Lintel</td>
</tr>
<tr>
<td></td>
<td>3.22</td>
<td>Ope - Prestressed concrete lintels</td>
</tr>
<tr>
<td></td>
<td>3.23</td>
<td>Ope - Jamb with proprietary cavity closer</td>
</tr>
<tr>
<td></td>
<td>3.24</td>
<td>Ope - Concrete Forward Sill</td>
</tr>
<tr>
<td></td>
<td>3.25</td>
<td>Ope - Concrete Back Sill</td>
</tr>
</tbody>
</table>
Ground Floor - Insulation above slab

THERMAL PERFORMANCE

- Inject an approved insulating expanding foam between the insulated dry-lining and the floor insulation
- Floor insulation to tightly abut blockwork wall

AIR BARRIER - CONTINUITY

- Seal gap between skirting board and floor with a flexible sealant
- Seal all penetrations through air barrier using a flexible sealant

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Detail applicable: Ground-bearing floor; raft foundation; in-situ suspended ground floor slab; pre-cast suspended ground floor. Insulation above slab, with timber floor finish.

Complying with checklist will help achieve design air permeability.
THERMAL PERFORMANCE

<table>
<thead>
<tr>
<th>CHECKLIST (TICK ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inject insulating expanding foam between the insulated dry-lining and the floor insulation / timber floor finish</td>
</tr>
<tr>
<td>Install perimeter insulation with an R-value as per relevant detail in section 1, 4 or 5</td>
</tr>
<tr>
<td>Ensure continuity between insulation below slab and insulation around perimeter</td>
</tr>
<tr>
<td>Floor insulation to tightly abut blockwork wall</td>
</tr>
</tbody>
</table>

AIR BARRIER - CONTINUITY

<table>
<thead>
<tr>
<th>CHECKLIST (TICK ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal gap between skirting board and floor with a flexible sealant</td>
</tr>
<tr>
<td>Seal all penetrations through air barrier using a flexible sealant</td>
</tr>
</tbody>
</table>

GENERAL NOTES

ACCEPTABLE CONSTRUCTION DETAIL
If installing compressible insulation, ensure full insulation depth between joists.

Inject insulating expanding foam between the insulated dry-lining and the timber floor deck.

Seal all penetrations through air barrier using a flexible sealant.

Seal gap between skirting board and floor with a flexible sealant.

Seal joints in timber floor with suitable glue. Fully support and fix any square edge joints in the decking to the joists.

Seal all penetrations through air barrier using a flexible sealant.

Provide similar air seals at all internal partitions.

Ensure insulation is in contact with underside of timber flooring.

Install perimeter insulation between the wall and the joist, or held in place with battens between joists with a minimum R-value as per relevant detail in section 1, 4 or 5.

GENERAL NOTES

If installing compressible insulation, ensure full insulation depth between joists.

Fully ventilate sub floor.

OPTION (TICK ONE)

Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or

Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or

Airtightness membrane and tapes.

ACCEPTABLE CONSTRUCTION DETAIL

Timber Suspended Ground Floor

DETAIL 3.03, 2011
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

Inject insulating expanding foam between the insulated dry-lining and the concrete screed

Ensure insulated dry-lining tightly abuts underside of floor slab

Install insulation in cavity as per section 1, 4 or 5 as appropriate

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

Seal gap between skirting board and floor and between head of insulated dry-lining and underside of floor slab with flexible sealant. (Dotted blue line is notional to depict air barrier continuity through floor zone)

Seal all penetrations through air barrier using a flexible sealant

Ensure continuous mortar bed between floor slab and top of blockwork wall.

GENERAL NOTES

ACCEPTABLE CONSTRUCTION DETAIL

Concrete Intermediate Floor

DETAIL 3.04, 2011

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Masonry inner leaf with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

Complying with checklist will help achieve design air permeability.
THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Inject insulating expanding foam between the insulated dry-lining and the timber floor finish
- Continue wall insulation across floor abutment zone. Install insulation with a minimum R-value as per relevant detail in section 1, 4 or 5 as appropriate
- Ensure insulated dry-lining tightly abuts underside of ceiling

GENERAL NOTES

Suspended timber floors may be laid in joist hangers rather than being built-in

For timber engineered joists, proprietary filler pieces must be fitted on both sides of web, between top and bottom flanges. Refer to manufacturers’ details

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Seal gap between skirting board and floor using a flexible sealant
- Mortar joints around built-in joists should be recessed or struck and carefully pointed with flexible sealant. Alternatively, joists may be fitted with proprietary shoes as they are installed. Seal shoe to blockwork face with a flexible sealant. (Dotted blue line is notional, to depict continuity of air barrier through floor zone)
- Fix ceilings first, and seal all gaps between ceiling and masonry wall with flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

Complying with checklist will help achieve design air permeability
Masonry Separating Wall

THERMAL PERFORMANCE

Install insulation in cavity as per relevant detail in section 1, 4 or 5 (Use appropriate material where cavity barrier or full-fill insulation is employed)

AIR BARRIER - CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant
- Fix insulated plasterboard to external wall first. Seal all gaps between board and separating wall with either adhesive or flexible sealant

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

GENERAL NOTES

- See TGD-B for guidance on fire safety and TGD-E for guidance on sound insulation
- Read this detail in conjunction with detail G-01, Masonry Separating Wall Head

ACCEPTABLE CONSTRUCTION DETAIL

Masonry Separating Wall

DETAIL 3.06, 2011
Install insulation in cavity as per relevant detail in section 1, 4 or 5 (Use appropriate material where cavity barrier or full-fill insulation is employed)

Fix insulated plasterboard to external wall first. Seal all gaps between board and masonry partition wall with either adhesive or flexible sealant.

Read this detail in conjunction with detail G-02, Masonry Partition Wall Head

Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or

Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or

Airtightness membrane and tapes

Complying with checklist will help achieve design air permeability

Masonry Partition Wall

(3) WALLS:- INTERNAL INSULATION

THERMAL PERFORMANCE

CHECKLIST
(TICK ALL)

AIR BARRIER - CONTINUITY

CHECKLIST
(TICK ALL)

Seal all penetrations through air barrier using a flexible sealant

Fix insulated plasterboard to external wall first. Seal all gaps between board and masonry partition wall with either adhesive or flexible sealant.

GENERAL NOTES

OPTION
(TICK ONE)

AIR BARRIER - OPTIONS
Fix partition lining first. Seal all gaps between lining and inner leaf of cavity with flexible sealant. (Dotted blue line is notional, to depict air barrier continuity through partition.)

Install insulation with a minimum R-value as per relevant detail in section 1, 4 or 5.

Seal all penetrations through air barrier using a flexible sealant.

Seal between insulated dry-lining and partition linings.

Complying with checklist will help achieve design air permeability.

Airtightness membrane and tapes

Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or

Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or

General Notes:
Read this detail in conjunction with details G-03, Timber Stud Partition Head, or G-04, Metal Stud Partition Head as appropriate.
Read this detail in conjunction with detail 3-15, Gable - Attic Floor Level.

THERMAL PERFORMANCE

- Ensure continuity of insulation throughout junction
- Ensure full depth of insulation between and over joists abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5
- Ensure insulated dry-lining tightly abuts underside of ceiling

AIR BARRIER - CONTINUITY

- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant
- Bed wall plate on continuous mortar bed
- Seal all penetrations through air barrier using a flexible sealant

GENERAL NOTES

Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.

Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist.

Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250. Installation of the eaves ventilator must not prevent free water drainage below the tiling battens.

Read this detail in conjunction with detail 3-15, Gable - Attic Floor Level.

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

CHECKLIST

- Complying with checklist will help achieve design air permeability
Eaves - Unventilated Attic

THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Ensure continuity of insulation throughout junction
- Ensure full depth of insulation between and over joists abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5
- Ensure insulated dry-lining tightly abuts underside of ceiling

GENERAL NOTES

- Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist
- Use proprietary eaves ventilator to ensure ventilation in accordance with BS5250
- Use vapour permeable roof underlay in strict accordance with third party certification
- Eaves insulation must not hinder free water drainage below the tiling battens
- Read this detail in conjunction with detail 3-15, Gable - Attic Floor Level

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant
- Bed wall plate on continuous mortar bed
- Seal all penetrations through air barrier using a flexible sealant

OPTION (TICK ONE)

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Eaves - Unventilated Attic

DETAIL 3.10, 2011
Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.

Ensure continuity of insulation throughout junction

Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation

Ensure full depth of insulation between and over joists abuts eaves insulation

Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5

Ensure insulated dry-lining tightly abuts underside of ceiling

Bed wall plate on continuous mortar bed

Install double, full depth timber nogging between floor joists, and seal between nogging, ceiling and upper stud wall with a flexible sealant. (Dotted blue line is notional, to depict air barrier continuity through noggings.)

Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant

Seal all penetrations through air barrier using a flexible sealant

Complying with checklist will help achieve design air permeability

General Notes
Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves. Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250. Installation of the eaves ventilator must not prevent free water drainage below the tiling battens. If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard. Use of over joist and under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter. Read this detail in conjunction with detail 3-16, Gable - Insulation between and under rafters - Ventilated Rafter Void

Acceptable Construction Detail

| Acceptable Construction Detail | Eaves - Insulation between and under rafters Ventilated Rafter Void - Dormer | Detail 3.11, 2011 |
(3) WALLS: INTERNAL INSULATION

Eaves - Insulation between and under rafters - Unventilated Rafter Void - Dormer

DETAIL 3.12, 2011

<table>
<thead>
<tr>
<th>THERMAL PERFORMANCE</th>
<th>AIR BARRIER - CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECKLIST (TICK ALL)</td>
<td>CHECKLIST (TICK ALL)</td>
</tr>
<tr>
<td>Ensure continuity of insulation throughout junction</td>
<td>Bed wall plate on continuous mortar bed</td>
</tr>
<tr>
<td>Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation</td>
<td>Install double, full depth timber nogging between floor joists, and seal between nogging, ceiling and upper stud wall with a flexible sealant. (Dotted blue line is notional, to depict air barrier continuity through noggings.)</td>
</tr>
<tr>
<td>Ensure full depth of insulation between and over joists abuts eaves insulation</td>
<td>Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant</td>
</tr>
<tr>
<td>Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5</td>
<td>Seal all penetrations through air barrier using a flexible sealant</td>
</tr>
<tr>
<td>Ensure insulated dry-lining tightly abuts underside of ceiling</td>
<td>Complying with checklist will help achieve design air permeability</td>
</tr>
</tbody>
</table>

GENERAL NOTES

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.
Vapour permeable roof underlay to be used in strict accordance with approved third party certification
Use of over joist and under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter
Eaves insulation must not hinder free water drainage below the tiling battens
Read this detail in conjunction with detail 3-17, Gable - Insulation between and under rafters - Unvented Rafter Void

OPTION (TICK ONE)

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Eaves - Insulation between and under rafters - Unventilated Rafter Void - Dormer

DETAIL 3.12, 2011
Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.

GENERAL NOTES

Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.

Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250. Installation of the eaves ventilator must not prevent free water drainage below the tiling battens

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of over joist and under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter

Read this detail in conjunction with detail 3-16, Gable - Ventilated Rafter Void

ACCEPTABLE CONSTRUCTION DETAIL

THERMAL PERFORMANCE

<table>
<thead>
<tr>
<th>checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure continuity of insulation throughout junction</td>
</tr>
<tr>
<td>Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation</td>
</tr>
<tr>
<td>Ensure full depth of insulation between and under rafters abuts eaves insulation</td>
</tr>
<tr>
<td>Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5</td>
</tr>
<tr>
<td>Ensure insulated dry-lining tightly abuts underside of ceiling</td>
</tr>
</tbody>
</table>

AIR BARRIER - CONTINUITY

<table>
<thead>
<tr>
<th>checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed wall plate on continuous mortar bed</td>
</tr>
<tr>
<td>Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant</td>
</tr>
<tr>
<td>Seal all penetrations through air barrier using a flexible sealant</td>
</tr>
</tbody>
</table>

Complying with checklist will help achieve design air permeability

OPTION

- **AIR BARRIER - OPTIONS**

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or

- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or

- Airtightness membrane and tapes
Eaves - Insulation between and over rafters - Unventilated Rafter Void - Dormer

THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Ensure continuity of insulation throughout junction
- Ensure insulation is installed tightly between rafters and is in contact with over-rafter insulation
- Ensure full depth of insulation between and over rafters abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5
- Ensure insulated dry-lining tightly abuts underside of ceiling

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Bed wall plate on continuous mortar bed
- Install double, full depth timber nogging between floor joists, and seal between nogging, ceiling and upper stud wall with a flexible sealant. (Dotted blue line is notional, to depict air barrier continuity through noggings.)
- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant
- Seal all penetrations through air barrier using a flexible sealant

Complying with checklist will help achieve design air permeability

GENERAL NOTES

Vapour permeable roof underlay to be used in strict accordance with approved third party certification

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of over rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter

Read this detail in conjunction with detail 3-18, Gable - Insulation between and over rafters

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Eaves - Insulation between and over rafters - Unventilated Rafter Void - Dormer

DETAIL 3.14, 2011
Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist.

Read this detail in conjunction with details 3-09, Eaves - Ventilated Attic, or 3-10, Eaves - Unventilated Attic, as appropriate.

Where different block materials are being used consideration should be given to avoid cracking in plaster at the junction between the block materials.

Thermal Performance

- Ensure full depth of insulation between and over joists extends to inner edge of wall.
- Pack compressible insulation between last truss or joist, and gable wall.
- Ensure insulated dry-lining tightly abuts underside of ceiling.

Air Barrier - Continuity

- Seal all penetrations through air barrier using a flexible sealant.
- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant.

General Notes

Thermal performance of junction can be improved significantly by using blockwork with a thermal conductivity of ≤0.20 W/mK in direction of heat flow in external wall at attic floor level or alternatively by running insulation of R-value 1.5 m² K/W vertically up internal face of gable wall to a height of 450 mm above ceiling level.

Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist.

Where different block materials are being used consideration should be given to avoid cracking in plaster at the junction between the block materials.

Air Barrier - Options

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes.
DETAIL 3.16, 2011

Gable - Insulation between and under rafters - Ventilated Rafter Void

THERMAL PERFORMANCE

<table>
<thead>
<tr>
<th>CHECKLIST (TICK ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit insulation over top of wall within gable ladder. Fully fill void unless underlay requires to be draped, when 25 mm void must be maintained</td>
</tr>
<tr>
<td>Ensure top of wall is leveled with mortar to correct pitch</td>
</tr>
<tr>
<td>Ensure insulation continuity throughout junction</td>
</tr>
<tr>
<td>Ensure full depth of insulation between and under rafters extends to wall. Pack gap between rafter and wall with compressible insulation</td>
</tr>
<tr>
<td>Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation</td>
</tr>
<tr>
<td>Ensure insulated dry-lining tightly abuts underside of ceiling</td>
</tr>
</tbody>
</table>

AIR BARRIER - CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant
- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant

GENERAL NOTES

Ensure ventilation to roof build-up in accordance with BS5250

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter

Read this detail in conjunction with detail 3-11: Eaves - Insulation between and under rafters - Ventilated Rafter Void

Ensure cavity is closed with insulant or proprietary cavity closer barrier

ACCEPTABLE CONSTRUCTION DETAIL

Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or

Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or

Airtightness membrane and tapes

OPTIONS

(AIR BARRIER - OPTIONS)

(AIR BARRIER - CONTINUITY)

(TICK ONE)
(3) WALLS:- INTERNAL INSULATION

Gable - Insulation between and under rafters - Unventilated Rafter Void

THERMAL PERFORMANCE

- Fit insulation over top of wall within gable ladder. Fully fill void unless underlay requires to be draped, when 25 mm void must be maintained.
- Ensure top of wall is leveled with mortar to correct pitch.
- Ensure insulation continuity throughout junction.
- Ensure full depth of insulation between and under rafters extends to wall. Pack gap between rafter and wall with compressible insulation.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure insulated dry-lining tightly abuts underside of ceiling.

AIR BARRIER - CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant.
- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either adhesive or flexible sealant.

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

GENERAL NOTES

- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- If required by BSS250, use vapour control plasterboard or separate vapour control layer behind plasterboard.
- Use of under-rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.
- Read this detail in conjunction with detail 3-12, Eaves - Insulation between and under rafters - Unventilated Rafter Void.
- Ensure cavity is closed with insulant or proprietary cavity closer barrier.

ACCEPTABLE CONSTRUCTION DETAIL

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes
General Notes:
Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.
Use of over-rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.
Ensure bottom of gable ladder is at least 25 mm above bottom of last joist.
Read this detail in conjunction with detail 3-14, Eaves - Insulation between and over rafters.

Ensure cavity is closed with insulant or proprietary cavity closer barrier.

Acceptable Construction Detail:

Gable - Insulation between and over rafters
Unventilated Rafter Void

Detail 3.18, 2011
Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal.

BS5250 requires vapour control layer to be installed between deck and insulation.

Use compatible materials during construction.

Seal all penetrations through air barrier using a flexible sealant.

Fix ceiling first, and seal all gaps between ceiling and masonry wall with either plaster, adhesive or flexible sealant.

Ensure full depth of over deck insulation extends to roof edge.

Tightly pack compressible insulation into void between top of wall and underside of roof deck.

Ensure insulated dry-lining tightly abuts upside of ceiling.

Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or

Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or

Airtightness membrane and tapes.

Complying with checklist will help achieve design air permeability.

Acceptable Construction Detail: Flat Roof - Eaves

Detail 3.19, 2011
(3) WALLS:- INTERNAL INSULATION

Flat Roof - Parapet

THERMAL PERFORMANCE

- Ensure roof insulation tightly abuts inner face of parapet wall
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation with a minimum R-value as per relevant detail in section 1, 4 or 5
- Ensure insulated dry-lining tightly abuts underside of ceiling

AIR BARRIER - CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant
- Fix ceiling first, and seal all gaps between ceiling and masonry wall with either plaster, adhesive or flexible sealant

GENERAL NOTES

BSS250 requires vapour control layer to be installed between deck and insulation

- Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Flat Roof - Parapet

DETAIL 3.20, 2011
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Ensure thickness of lintel material is no more than 3 mm
- Ensure lintel is fully insulated and does not have a base plate
- Install insulation to lintel soffit with a minimum R-value as per relevant detail in section 1, 4 or 5

GENERAL NOTES

ACCEPTABLE CONSTRUCTION DETAIL

- **Ope - Steel Lintel**

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant
- Apply flexible sealant to interface between plasterboard internal finish, and frame members

AIR BARRIER - OPTIONS

OPTION (TICK ONE)

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

Complying with checklist will help achieve design air permeability.
WALLS: INTERNAL INSULATION

Ope - Prestressed concrete lintels

<table>
<thead>
<tr>
<th>THERMAL PERFORMANCE</th>
<th>AIR BARRIER - CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECKLIST (TICK ALL)</td>
<td>CHECKLIST (TICK ALL)</td>
</tr>
<tr>
<td>Install proprietary cavity closer, or block of insulation, with thermal resistance path through closer having a minimum R-value as per relevant detail in section 1, 4 or 5</td>
<td>Seal all penetrations through air barrier using a flexible sealant</td>
</tr>
<tr>
<td>Install insulation to lintel soffit, with minimum R-value as per relevant detail in section 1, 4 or 5</td>
<td>If forming air barrier to walls with blockwork inner leaf, or with scratch coat on blockwork, install a flexible sealant between cavity closer and blockwork wall</td>
</tr>
<tr>
<td></td>
<td>Apply flexible sealant to interface between plasterboard internal finish, and frame members</td>
</tr>
</tbody>
</table>

GENERAL NOTES

ACCEPTABLE CONSTRUCTION DETAIL

Ope - Prestressed concrete lintels

Air Barrier - Options

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

Complying with checklist will help achieve design air permeability
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

1. Install insulation to jamb, with minimum R-value as per relevant detail in section 1, 4 or 5
2. Install proprietary cavity closer, or block of insulation, with thermal resistance path through closer having a minimum R-value as per relevant detail in section 1, 4 or 5

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

1. Seal all penetrations through air barrier using a flexible sealant
2. Apply flexible sealant to interface between plasterboard internal finish, and frame members
3. If forming air barrier to walls with blockwork inner leaf, or with scratch coat on blockwork, install a flexible sealant between cavity closer and blockwork wall

AIR BARRIER - OPTIONS

OPTION (TICK ONE)

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

GENERAL NOTES

ACCEPTABLE CONSTRUCTION DETAIL

Ope - Jamb with proprietary cavity closer

DETAIL 3.23, 2011
THERMAL PERFORMANCE

- Ensure insulated dry-lining tightly abuts underside of windowboard

AIR BARRIER - CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant
- Apply flexible sealant to interface between plasterboard and windowboard, and between windowboard and frame
- If forming air barrier to walls with blockwork inner leaf, or with scratch coat on blockwork, install a flexible sealant between cavity closer and blockwork wall
- Ensure air barrier continuity between window, and wall plasterboard

AIR BARRIER - OPTIONS

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes

GENERAL NOTES

- Install proprietary cavity closer, or block of insulation, with thermal resistance path through closer having a minimum R-value as per relevant detail in section 1, 4 or 5

Complying with checklist will help achieve design air permeability

ACCEPTABLE CONSTRUCTION DETAIL
THERMAL PERFORMANCE

CHECKLIST
(TICK ALL)

- Install insulation under sill with a minimum R-value as per relevant detail in section 1, 4 or 5
- Ensure insulated dry-lining tightly abuts underside of windowboard

GENERAL NOTES

- Keep cavities clean of mortar snots and other debris during construction

AIR BARRIER - CONTINUITY

CHECKLIST
(TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant
- Apply flexible sealant to junctions between plaster/plasterboard and sill board, and between sill board and window frame
- Ensure air barrier continuity between the window and the wall air barrier line

Complying with checklist will help achieve design air permeability.

ACCEPTABLE CONSTRUCTION DETAIL

Ope - Concrete Back Sill

OPTION
(TICK ONE)

- Masonry inner leaf, with scratch coat applied to internal face of inner leaf, with insulated dry-lining on dabs or mechanically fixed pre-treated timber battens, or
- Insulated dry-lining on dabs or battens, with continuous ribbon of adhesive tape around all openings, along top and bottom of wall, and at internal and external corners, or
- Airtightness membrane and tapes